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ABSTRACT:Adult crabs are known to play critical roles in the survival of their adult coral hosts,
but little is known of the mutualism between juvenile crabs (0.5 cm) and their juvenile hosts.
Field and laboratory experiments both demonstrated that the presence of juvenile crabs of the
genus Trapezia in young host Pocillopora corals (2 to 3 cm diameter) increased coral survival by
32% and reduced consumption by the corallivorous seastar Acanthaster planci. These experi-
ments also showed that juvenile Trapezia were not effective at deterring predation by another
common predatory seastar, Culcita novaeguineae. Finally, our work highlights that the defensive
ability of symbiotic crabs may be genus-specific, as juvenile Tetralia spp. crabs, obligate sym-
bionts of Acropora spp., displayed no protection against either A. planci or C. novaeguineae.
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INTRODUCTION

Over the last 30 yr, coral cover has drastically de-
clined worldwide mainly due to a combination of
global (i.e. increased seawater temperature and
ocean acidification) and local changes (e.g. anthro-
pogenic perturbations) (Birkeland & Lucas 1990,
Fabricius et al. 2008). However, outbreaks of Acan-
thaster planci, the major coral predator of Indo-
Pacific corals, are an increasingly common threat to
coral reef systems (Birkeland & Lucas 1990) and can
lead to mass mortality of corals and drastic modifica-
tions to reef communities (Berumen & Pratchett 2006,
Pratchett et al. 2009). For example, the A. planci out-
break first recorded in 2006 in French Polynesia
lasted approximately 4 yr and resulted in a 90% de-
cline in the populations of adult Acropora and Pocillo-
pora, 2 dominant coral genera in reefs surrounding
the island of Moorea (Kayal et al. 2011, Trapon et al.
2011, Leray et al. 2012). During this outbreak (2008
and 2009), the smallest size classes of Pocillopora suf-
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fered the highest predation around Moorea (Leray et
al. 2012). However, despite the depletion of preferred
prey, A. planci were still found at higher than normal
densities up until 2010 (Kayal et al. 2011, Mills 2012)
as well as in 2011 (authors' pers. comm.). The resist-
ance, recovery and resilience of coral assemblages
following such devastating outbreaks of A. planci is
reliant, in part, on the ability of juvenile corals to per-
sist and/or repopulate the reef during and after out-
breaks. Nevertheless, to date, predation dynamics for
juvenile corals have received little attention.
Scleractinian corals associate with a wide diversity
of organisms that contribute to their overall fitness
and survival (Stella et al. 2010, 2011). Beyond the
well-known endo-symbiotic zooxanthellae association
(see Stat & Gates 2011 and references therein), recent
works also highlight the important role of exo-
symbionts for coral survival (McKeon et al. 2012, Stier
et al. 2012), as well as the fragility of this mutualism
under climate-induced high temperatures (Stella et
al. 2014). For example, coral hosts benefit tetraliid and
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trapeziid crabs by offering spatial refuge and provid-
ing food in the form of mucus (Rinkevich et al. 1991,
Patton 1994). In turn, adult crabs play a critical role in
adult coral survival by removing sediment from the
surface of soft coral tissue (housekeeping: Stewart et
al. 2006, Stier et al. 2012), and by actively defending
against the deleterious effects of vermetid snails (Stier
et al. 2010) and corallivory by gastropods and seastars
(Glynn 1976, Pratchett 2001, McKeon et al. 2012).
However, with the exception of a recent study focus-
ing solely on the housekeeping services of newly set-
tled exo-symbiotic crabs to their newly recruited host
corals (Stewart et al. 2013) and a study investigating
the defensive abilities of juvenile Trapezia against
Drupella cornus (McKeon & Moore 2014), these stud-
ies have been carried out on adult corals and adult
crabs. In order to understand the limitations to the re-
covery of coral populations following perturbations,
such as an A. planci outbreak, a comprehensive un-
derstanding of the coral-crab symbiosis, in terms of
protection against predation, throughout the life cycle
of both parties is crucial. Young pocilloporid recruits
(1 to 4 cm diameter) harbour increasing numbers of
trapeziid crabs with an increasing complexity of their
branching morphology (Stewart et al. 2013). There-
fore, the presence of effective coral guards in juvenile
corals may indeed have important implications for the
recovery and, therefore, resilience of coral assem-
blages. This study aimed to bridge this gap by focus-
ing on the protection against predation afforded by
juvenile crabs to their juvenile hosts from 2 coral gen-
era, Pocillopora and Acropora.

Of the 3 dominant coral genera found in Moorea,
Pocillopora and Acropora are the most sensitive to A.
planci predation (Kayal et al. 2012, Leray et al. 2012).
Pocillopora spp. are associated with exo-symbiotic
Trapezia spp. crabs and Acropora spp. are associated
with Tetralia spp. crabs (Garth 1964, Castro 1976) and
as such were the focus of this study. This study used in
situ manipulations and controlled laboratory experi-
ments including the 2 corallivorous seastar species A.
planciand Culcita novaeguineae, that are common on
the reef, to investigate the protection afforded by
these juvenile crabs to their respective juvenile hosts.

MATERIALS AND METHODS
Study sites
In situ manipulations were conducted on fringing

reefs at 2 sites located along the north shore of
Moorea, French Polynesia (17°30'S, 149°50' W) be-

tween January and May 2009. One site was located
near Opunohu Bay (17°29'S, 149°52'W) and the
other at the mouth of Cook's Bay (17°29'S,
149°49'W). Both sites were located in shallow water
(depth of 2 to 3 m) within 20 m of shore. Corallivorous
seastars occurred naturally at both sites during the
study.

Biological material

Juvenile Pocillopora spp. and Acropora spp. corals
(mean whole colony diameter 2.3 + 0.4 cm and 2.7 +
0.8 cm, respectively, Fig. 1) were collected from the
reef crest and transported back to the laboratory in
individual plastic bags that retained symbiotic crabs
within their respective host colonies. Coral colonies
were immediately transferred into outdoor aquaria
(400 1 circular plastic tanks; 146 cm diameter)
equipped with a continuous flow of seawater. Of
these small-sized coral colonies, more than half were
associated exclusively with a single exo-symbiotic
crab, while the rest lacked crab exo-symbionts
entirely. Corals were, therefore, separated into 2 cat-
egories, hereafter designated as either ‘Crab’ or 'No
crab’, and the coral hosts' natural association with a
crab or lack thereof was conserved.

Coral-associated crabs were only identified to the
genus level in order to minimise handling stress
(£0.5 cm, Fig. 1). Even though crabs were only iden-
tified to the genus level, McKeon & Moore (2014)
highlighted the similar defensive abilities of small (4
to 6 mm carapace width) Trapezia species (T. serenei
and T. bideutata) against Drupella. Therefore, in the
unlikely event that Trapezia species varied between
predation treatments, they should not differ in their
defensive abilities.

Corals were affixed to small plastic tiles with 2-part
epoxy adhesive (Splash Zone Z-Spar), in order to
facilitate laboratory manipulations by limiting direct
handling damage to the coral. After a minimum of 2 d
of acclimation in aquaria, juvenile corals were subse-
quently used for the different experiments. Collec-
tion efforts were limited at both in situ experimental
sites by the low abundance of juvenile acroporiids
compared to the juvenile pocilloporids. Seastars of
each species collected for use in the caged experi-
ment were of approximately equal sizes, ranging
between 13 and 17 cm for Culcita novaeguineae and
29 and 35 cm diameter for Acanthaster planci. Crab
behaviour during predation was not recorded be-
cause of the difficultly in observing the crabs, owing
in part to their small size and in part to the large size
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‘alive’, where live tissue was clearly
present, or ‘dead’, where live tissue
was absent and the entire colony
was white and the presence or
absence of associate crabs was
also verified. Care was taken to
remove all newly-settled juvenile
crabs from coral colonies using
soft wooden skewers without touch-
ing or damaging coral tissue (ob-
served only in 1 case). No symbiotic

Fig. 1. Species-specific juvenile crab-coral mutualistic associations: (a) crabs were lost within the ‘Crab’

Trapezia spp. crab with Pocillopora spp. coral and (b) Tetralia spp. crab with

Acropora spp. coral

of the predator covering the coral recruit and obscur-
ing our view.

Coral survival in the presence/absence of juvenile
Trapezia spp. crabs

To determine the general effectiveness of protec-
tion afforded by juvenile crabs to their hosts, we com-
pared their defensive abilities when facing natural
predators, including corallivorous fishes and seast-
ars, using exclusion cages in the field. This study was
carried out on the fringing reef of Cook’s Bay. In this
experiment, a total of 103 juvenile Pocillopora spp.
corals with ‘Crab’ and ‘No crab’ were subjected to 2
levels of predator access: (1) protected from preda-
tors: 'Cage’, or (2) exposed to predators: '‘No cage'.
Colonies of juvenile Pocillopora spp. corals with
crabs were randomly divided into 2 treatments:
‘Cage/Crab’ (n = 26, mean coral diameter + SE: 3.0 +
0.5 cm, size range: 2.1 to 4.2 cm) and ‘No cage/Crab’
(n = 27, mean diameter: 3.1 + 0.6 cm, range: 1.7 to
4.5 cm), as were those without crabs: ‘Cage/No crab’
(n = 21, mean diameter: 2.7 + 0.5 cm, size: 2.0 to
4.0 cm) and ‘No cage/No crab’ (n = 29, mean diame-
ter: 2.8 £ 0.5 cm, range: 1.9 to 4.3 cm). For logistical
reasons, the experiment was repeated over two 18 d
periods.

Cages were made using galvanized steel mesh
(40 cm in diameter and 30 cm in height with a 3 cm
mesh size) and were placed on top of 2 colonies of the
same treatment. Although these cages did not pro-
tect the corals from all predators (i.e. those fishes and
snails <3 cm), they effectively kept out both species
of corallivorous seastars (A. planci and C. novae-
guineae) and larger fishes. Every 2 d during the
experiment, sample corals were categorized as either

treatment.

The survival rate of Pocillopora
spp. colonies in each treatment was
estimated based on the proportion
of corals that were alive every other day. A homo-
geneity test (Pearson's chi-squared test statistic) was
used to compare survival frequencies in each treat-
ment on the final day of each experimental run (Day
18). To test the effect of coral size on their survival, an
ANOVA was performed on the logarithm of size
according to treatment (‘Crab/No crab’, ‘Cage/No
cage') and survival (‘alive/dead’). These analyses
were performed with R 2.15.2 software and the sur-
vival package.

Protection of juvenile Pocillopora spp. from Acan-
thaster planci by juvenile Trapezia spp. crabs

To specifically test the ability of juvenile Trapezia
spp. crabs to protect their juvenile host Pocillopora
spp. corals against A. planci on the reef, we con-
ducted an in situ predation experiment on the fring-
ing reef of Opunohu Bay with 45 Pocillopora spp.
juvenile corals (‘Crab’: mean coral diameter + SE:
2.1 + 0.6 cm, size range: 1.2 to 4.3 cm, and 'No crab’:
mean diameter: 1.9 + 0.5 cm, range: 1.0 to 3.4 cm).
Every evening, just before sunset after which preda-
tors and crabs generally become active, 1 juvenile
Pocillopora spp. colony with a crab associate and one
juvenile Pocillopora spp. colony without a crab were
simultaneously placed under a galvanised steel cage
(80 cm in diameter and 50 cm in height with 3 cm
mesh size) equidistantly from the inner perimeter
and one A. planci was added into the centre of the
cage. A. planci predators had been acclimatised in
cages located on bare sand at the experimental site
for 2 d prior to the experiment. Each A. planci indi-
vidual and each coral colony were used only once.
Approximately 12 h after the beginning of the exper-
iment, any signs of predation on the coral colonies
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was recorded as consumed (e.g. exposed white
skeleton). In the event that both sample juvenile
Pocillopora spp. colonies in a given trial, with and
without crab, were not consumed (n = 3/45), results
were excluded from the statistical analyses. Results
were evaluated using a chi-square test of independ-
ence (homogeneity test) on corresponding reformu-
lated 2-by-2 contingency tables. To estimate the
uncertainty in measurement, 95% confidence inter-
vals of an exact binomial distribution were used. To
test the effect of coral size on consumption, an
ANOVA was performed on the logarithm of size
according to treatment (‘Crab/No Crab’) and rank
consumption.

Influence of different symbiotic crab genera on the
feeding preferences of two seastar predators

To specifically determine the influence of juvenile
trapezioid crabs (Trapezia spp. and Tetralia spp.) on
feeding preferences of predatory seastars, we con-
ducted a laboratory tank-based predation experi-
ment. Trapezia spp. were always paired with their
Pocillopora spp. host and Tetralia spp. with their
Acropora spp. host. Four treatments were created:
‘Crab’ vs. '‘No crab’ crossed with juvenile individuals
of the coral genus, Acropora (n = 116; 'Crab’: mean
coral diameter + SE: 2.7 + 0.6 cm, size range: 1.5 to
4.1 cm, and ‘No crab': mean coral diameter: 2.9 +
0.7 cm, range: 1.6 to 4.9 cm) and Pocillopora (n = 116,
‘Crab’: mean coral diameter: 3.0 + 0.7 cm, size range:
1.8 to 5.2 cm, and 'No crab': mean coral diameter:
2.8 £ 0.6 cm, size range: 1.4 to 4.5 cm). These 4 treat-
ments were positioned randomly, equidistant from
each other and from the centre at the periphery of a
large circular tank (400 1, 146 cm in diameter). An
open-flow system continuously supplied the experi-
mental tanks with seawater from the lagoon. Prior to
the experiment, seastars were kept in laboratory
aquaria and starved for 2 d to allow ample time
for acclimation to aquarium conditions. At sunset, 1
corallivorous seastar, either A. planci or C. novae-
guineae, was introduced into the centre of each tank,
equidistant from each coral. Seastar displacement
among juvenile coral colonies was observed, and the
order in which coral colonies were consumed was
recorded throughout the night. These feeding exper-
iments were replicated 32 times using A. planci and
26 times using C. novaeguineae. Individual seastars
and coral colonies were used for only one trial. A
feeding event was defined as the removal of all tissue
from the coral skeleton by the seastar.

The feeding preferences of the predatory seastars
were assessed based on the order in which they fed
on coral (rank ranged from 1 to 4, 1 being the first
choice, and 4 being the last choice). The frequency of
feeding of a given treatment was estimated using the
NCi:NC ratio, with NCi being the number of con-
sumed corals of one treatment at the rank i, and NC
being the total number of consumed corals of the
same treatment in all 4 ranks. To establish whether
there were differences in feeding preferences
between seastar taxa for all treatments, we used a
non-parametric Kruskal-Wallis rank sum test with
the 8 possible treatment combinations by the 2 pred-
ator genera, 2 coral genera, and ‘Crab’ vs. ‘No crab’
conditions. A post hoc Conover-Inman test was per-
formed to evaluate pairwise comparisons between
the different combinations. To test the effect of coral
size on consumption, an ANOVA was performed on
the logarithm of size according to the factors: treat-
ment and rank consumption.

RESULTS

Coral survival in the presence/absence of juvenile
Trapezia spp. crabs

The observed distribution of living and dead
colonies between the 2 coral samples placed under
the same cage was not significantly different from an
expected distribution for 2 colonies taken randomly
from the whole sample population (Goodness of fit
test, x2 =0.93, p = 0.63), indicating that the 2 colonies
under the same cage are independent. Therefore,
each colony was hereafter analysed individually.

Statistical comparisons of the results between the
two 18 d periods were not significantly different (log-
rank test: x> = 4.9, p = 0.675) and, therefore, were
combined for subsequent analyses. Of the 103 juve-
nile Pocillopora spp. corals, 18 died during the first
4 d of the experiment, but mortality was not signifi-
cantly different between the 4 treatments (ranging
from 15 to 25 %; homogeneity test: x% = 2.95, p = 0.4).
Following Stewart et al. (2006), we thus considered
this period as the acclimation phase, removed the 18
dead colonies from the analyses and used Day 4 as
the start of the experiment for subsequent analyses
(n = 85; 'Cage/Crab’ n = 20; ‘No cage/Crab’ n = 22;
‘Cage/No crab’' n = 16, and '‘No cage/No crab’ n = 27).
The survival rate of corals in each of the 4 treatments
was not dependent on coral size (Treatment x Sur-
vival, ANOVA: df = 3, F=0.378, p = 0.77).
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The survival of juvenile Pocillopora spp. colonies
that hosted juvenile crabs was significantly higher
than colonies lacking associate crabs (Fig. 2). The
survival of corals hosting crabs remained constant
after 8 d, whether corals were protected by a cage or
not (85 and 73 % survival rate respectively). On the
other hand, coral colonies devoid of crabs exhibited
relatively constant rates of mortality over time, 13
and 6% of the colonies were lost between Days
10-12 and 16-18, respectively, for caged colonies,
and for uncaged colonies, 22 and 7% of colonies
were lost between Days 6-10 and 14-16, respec-
tively (Fig. 2). Although corals experiencing the
simultaneous protection of a crab and a cage had
higher survival than those with a crab but without a
cage, this was not significantly different (y? = 0.937,
p = 0.167; A% = 12%, Table 1). Furthermore, after

18 d, there was no difference in mortality either
between caged colonies with and without crabs
(Table 1) or between ‘Cage/No crab’ and 'No cage/
Crab’' colonies (Table 1). On the other hand, when
neither a cage nor a crab protected the coral host, it
had a significantly lower survival rate than all other
treatments (Fig. 2, Table 1).

Protection of juvenile Pocillopora spp. from
Acanthaster planci by juvenile Trapezia spp. crabs

Taking into account the 42 controlled feeding trials,
a significant difference in alive/consumed corals ac-
cording to presence or absence of juvenile trapeziid
crabs was observed (y% = 5.97, p = 0.014), independ-
ent of coral size (seastar consumption x exo-symbiont
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Fig. 2. Survival rates of juvenile Pocillopora spp. corals as a function of the

presence or absence of a cage and the presence or absence of associate sym-

biotic crabs (n = 85 on Day 4). Caged (continuous line), uncaged (dashed line),
crab (filled square) and no crab (empty square). Parentheses: sample sizes

Table 1. Comparative statistical analyses of percent survival of juvenile Pocil-
lopora spp. corals on the reef exposed to different treatments (with or without
a cage and with or without a crab). Statistical analyses excluded juvenile
corals that died during the initial 4 d acclimation period and compared results
among different treatments (n = 85 coral colonies). The relative gain or loss in
percent (values of the difference between ‘line treatment’ and ‘column treat-
ment'; A% = line %-column %) is indicated in the column (A%) and tested
using Pearson's chi-squared test statistic (*p-values < 0.05)

Cage/No crab No cage/Crab No cage/No crab
A% P A% pXY A% P (1)

Cage/Crab
Cage/No crab
No cage/Crab

+16 0.122(1.358) +12 0.167 (0.937)

-4 0.395 (0.071)

+44 0.001* (9.345)
+28 0.038* (3.154)
+32 0.013* (5.013)

presence, ANOVA: df = 3, F=1.149,
p = 0.33). Corals lacking crabs were
consumed preferentially (standard-
ized residual = +2.44, p < 0.09).
Of these 42 trials, 25 (60%) ended
with the consumption of both juve-
nile corals, with and without crabs,
whereas 17 (40%) ended with the
consumption of only one specific
juvenile coral (‘Crab’, n = 4; 'No
crab’, n =13).

Protection atforded by symbiotic
crabs against two echinoderm
predators

The Kruskal-Wallis test on the rank
sum of consumption indicated signifi-
cant differences between predatory
coral feeding preferences (W =20.241,
p = 0.009). The feeding preference of
A. planci was significantly altered
(pairwise comparison post-hoc tests
p <0.002; Table 2) by the presence of
juvenile Trapezia crabs in Pocillopora
spp. corals (Fig. 3a), independent of
juvenile coral size (rank consumption
x treatment, ANOVA: df = 9, F =
1.633, p = 0.11). Pocillopora spp.
corals with associate Trapezia crabs
were consistently the last of the 4
treatments to be consumed (Table 2),
whereas there was no significant ef-
fect on consumption order for the
other 3 treatments (Fig. 3a).
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Conversely, Culcita novaeguineae did not exhibit a
feeding preference when crabs were present. Nei-
ther Trapezia nor Tetralia crabs produced any deter-
rent effect on the feeding choice of the seastar C.
novaeguineae on their respective host corals
(Fig. 3b). However, in the absence of exo-symbionts,
consumption by this corallivorous predator showed a
significant preference for coral genus: Pocillopora
over Acropora (p = 0.045, Table 2). No significant
effect of coral size on consumption C. novaeguineae

Table 2. Comparative statistical analyses of the order in
which juvenile Pocillopora spp. and Acropora spp. corals
were consumed by the predators Acanthaster planci (n = 32)
and Culcita novaeguineae (n = 26) in the presence (‘Crab’)
or absence (‘No crab’) of associate juvenile Trapezioid crabs
associated with Pocillopora or Acropora. p-values indicate
results (*p-value < 0.05) of the post hoc Conover Inman test

Predator Exo- Acropora Pocillopora
Coral genus symbiont No crab Crab No crab Crab

A. planci
Acropora No Crab
Crab 0.734
Pocillopora No crab 0.650 0.910

Crab 0.002* 0.001* <0.001*
C. novaeguinea

Acropora No crab
Crab 0.315
Pocillopora Nocrab  0.045* 0.315

Crab 0.315 1 0.315
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was observed (rank consumption x treatment,
ANOVA: df =9, F=1.733, p = 0.09).

DISCUSSION

Our in situ experiments demonstrated that juvenile
Trapezia spp. crabs had a beneficial effect on juvenile
Pocillopora spp. corals, either in terms of survival or
deterring predation, when exposed to large reef pred-
ators, and particularly in the presence of the seastar
Acanthaster planci. Furthermore, our controlled caged
experiments demonstrated that juvenile Trapezia spp.
crabs were able to deter predation on juvenile corals
by the seastar A. planci, until coral prey was limited,
when their host was ultimately eaten. Finally, this
study indicated that the 2 seastars A. planci and Cul-
cita novaeguineae have different feeding behaviours
when symbiotic crabs protect corals. These experi-
ments established that juvenile trapezioid crabs bene-
fit juvenile Pocillopora corals, which play an important
role in coral community structure, and thus are major
players in coral reef ecosystems. Our results suggest
that the absence of juvenile trapeziid crabs in juvenile
coral colonies will pose severe limitations for the re-
covery of coral population following outbreaks of A.
planci.

The in situ cage experiment highlighted the impor-
tance of juvenile trapeziid crabs in host coral sur-
vival. In this experiment, uncaged corals were likely
subjected to attacks by various predators observed at

1004 P Culcita novaeguinea
80 -
60 -
==+ Acro
/s
40 A — Poc
/ ® Crab
/7
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20 ~ o -
¢
T T T T
1 2 3 4
Rank

Fig. 3. Cumulative frequency of coral consumption by predatory seastars (a) Acanthaster planci (n = 32) and (b) Culcita
novaeguineae (n = 26) on Acropora (dashed line), Pocillopora (continuous line), Crab (filled circle) and No crab (empty circle)
in a laboratory feeding choice experiment
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the site, including seastars and corallivorous fishes
such as parrotfishes (Randall 1974, Rotjan & Lewis
2006) and butterflyfishes (Sano 1989, Pratchett 20095),
whereas caged corals were protected from predators
larger than 3 cm. However, despite being protected
from predators, there was still a 16 % difference in
survival between caged corals with and without
Trapezia spp. crab associates. This survival differ-
ence could be attributed to the sediment clearing
abilities of both newly settled and older crabs (Stew-
art et al. 2006, 2013), as sedimentation is known to be
an important cause of coral mortality (Fabricius 2005,
Weber et al. 2012). Furthermore, the episodic
decreases in survival of corals without crab associ-
ates (Fig. 2), could demonstrate sporadic sedimenta-
tion and/or predation processes, with each episodic
decrease reflecting one or both of these sporadic
events.

After 2 wk, uncaged corals with crabs had a higher
survival rate than those without crabs: 32% more
corals were alive. This difference in coral survival
was greater than that between caged corals with and
without crabs (16 %) suggesting that beyond their
housekeeping and other coral-benefiting activities,
juvenile Trapezia spp. crabs can also protect their
host corals from some, if not all, predatory attacks.
This hypothesis was reinforced by our results in
which the protective capacity of juvenile trapeziid
crabs reduced coral consumption by A. planci (i.e. in
vivo and in vitro feeding preference experiments):
juvenile Pocillopora spp. corals without juvenile
Trapezia spp. crab were consumed first. Thus, even
at their juvenile life stage, trapeziid crabs were able
to protect their juvenile coral host to some extent
against A. planci.

How do trapeziid crabs defend their hosts? An
understanding of the defensive abilities of crabs was
limited in this study, in part because of the small size
of juvenile corals and crabs, and in part because of
the relatively large size of predators obscuring our
view, such that direct observations of seastar—crab
interactions were not possible. However, it is clear
that a defensive mechanism is operating. Adult
Trapezia spp. are thought to detect danger using
both visual (Glynn 1980) and chemical cues in the
environment emitted from the predator (Whittaker &
Feeny 1971, Kittredge et al. 1974), after which they
move to the periphery of the coral host and vigor-
ously pinch and clip off tube feet or spines with their
pincers (Glynn 1980, McKeon et al. 2012). Juvenile
Trapezia individuals (irrespective of species) may
behave in a similar manner to adults, even if physical
defence seems unlikely due to their small size (e.g.

McKeon & Moore 2014). In addition, movement to
the periphery of their host might stimulate chemical
production by the coral (Brauer et al. 1970) that
repels the predator (Glynn & Krupp 1986, Pratchett
2001). Furthermore, symbiotic crabs may themselves
also release anti-predatory chemicals found in crus-
taceans (e.g. toxins, feeding repellents) (Derby &
Sorensen 2008), in a similar manner to other marine
and terrestrial organisms (Machado et al. 2005,
Pohnert et al. 2007). Finally, trapeziid crabs could
also produce snapping sounds with their chelae that
are perceived by A. planci and deter their attack in a
similar way to snapping shrimps (Glynn 1976). These
possibilities, which are not necessarily mutually
exclusive, may account for the protective capability
of juvenile Trapezia spp. crabs, potentially by mim-
icking the presence of adult guarding crabs.

In contrast, while adult Trapezia spp. crabs are able
to protect their coral host against C. novaeguineae
(McKeon et al. 2012, McKeon & Moore 2014), in our
experiments, juvenile Trapezia spp. did not. C.
novaeguineae has a more rigid body and harder
exterior compared to A. planci, and as such could be
unaffected by juvenile trapeziid crab attacks. More-
over, juvenile Tetralia spp. associated with juvenile
Acropora spp. corals did not have any deterrent
effect on either A. planci or C. novaeguineae. A pre-
vious study on adult crabs suggests that morphologi-
cal differences between the 2 trapezioid genera may
account for their different abilities to physically repel
predators, with Trapezia having a larger carapace
and larger chelipeds than Tetralia (Glynn 1987). The
smaller appendages of juvenile Tetralia spp., com-
pared to the same-sized juvenile Trapezia spp, may
also be insufficient to produce sounds loud enough to
deter predators.

Regardless of the defence mechanisms employed
by juvenile Trapezia spp. crabs, none of them
deterred C. novaeguineae. The different reactions of
A. planci and C. novaeguineae to the presence of
Trapezia spp. in potential prey corals may suggest an
adaptive character discriminating these seastars,
crabs and corals during evolution. This is important
in coral reef ecosystems because of the different life
histories of each of the 3 main players. The popula-
tion dynamics of A. planci tends to be comprised of
boom-and-bust outbreaks (Moran 1986) resulting in
large-scale devastation of corals during outbreak
periods, whereas those of C. novaeguineae are stable
(Goreau et al. 1972). Therefore, selection may have
been stronger on the defensive behaviours of crabs
against A. planci than on C. novaeguineae. Further-
more, Acropora spp. have faster growth rates than
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Pocillopora spp. corals (Harriott 1999, Baird &
Hughes 2000) and hence selection on behaviour to
defend against predation in the slower growing
Pocillopora spp. may have been stronger. Finally,
how do we reconcile the difference in protective abil-
ities between the juvenile crabs? The colonization of
trapeziid and tetraliid crabs occurred on 2 independ-
ent occasions without any common ancestry, despite
the monophyletic origin of obligate association of
crabs with branching corals (Lai et al. 2009). How-
ever, Acropora spp. corals may have been colonized
by tetraliids later than the colonization of Pocillopora
spp. by trapeziids, and as such the former may not
yet have developed protective abilities at the juve-
nile stage. Alternatively, our results may suggest that
in the absence of associated juvenile trapeziid crabs,
juvenile Pocillopora spp. host corals would be the
coral species more frequently preyed upon. This
result, coupled with their slower growth rates, would
result in greater selection on the association of juve-
nile Pocillopora spp. corals with symbiotic crabs and
less selection on Tetraliidae to protect juvenile Acro-
pora spp.

In conclusion, our data reported new aspects of
juvenile crab defence with implications for the sur-
vival of juvenile Pocillopora spp. corals (<5 cm in
diameter; Harrison & Wallace 1990). The important
role of this symbiotic relationship was highlighted by
the high proportion of juvenile trapeziid crab-associ-
ated juvenile corals found under natural conditions
on the reef (>50%). As small vulnerable juvenile
recruits represent a bottleneck in coral survival
(Hughes & Connell 1987), especially following A.
planci outbreaks, the protective ability of small
Trapezia spp. crabs may play an important role in
reef resilience and reef community dynamics.
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