Population structure, spatial distribution and life-history traits of blacktip reef sharks *Carcharhinus melanopterus*

J. Mourier*†‡, S. C. Mills† and S. Planes*†

*Laboratoire d’Excellence ‘CORAIL’, USR 3278 CNRS-EPHE, CRIOBE BP 1013 Moorea, 98729, Polynésie française and †Laboratoire d’Excellence ‘CORAIL’, USR 3278 CNRS-EPHE, CBETM de l’Université de Perpignan, 66860, Perpignan Cedex, France

(Received 23 August 2012, Accepted 13 December 2012)

During a survey of the population of blacktip reef shark *Carcharhinus melanopterus* in Moorea (French Polynesia) between 2007 and 2011, population structural characteristics were estimated from 268 individuals. Total length (LT) ranged from 48 to 139 cm and 48 to 157 cm for males and females, respectively, demonstrating that the average LT of females was larger than that of males. The *C. melanopterus* population at Moorea showed an apparent spatial sexual segregation with females preferentially frequenting lagoons and males the fore-reefs. Mean growth rate was c. 6 cm year^{-1}. Males reached sexual maturity at 111 cm LT. This study reports on the population characteristics of this widespread carcharhinid shark species and makes comparisons with other locations, confirming high geographic variability in the population structure of the species.

© 2013 The Authors

Key words: capture–recapture; geographic variability; growth; life history; sexual segregation; shark.

INTRODUCTION

Habitat choice is one of the processes influencing population distribution, abundance and hence the potential availability of a marine species to fisheries exploitation (Freon & Misund, 1999). Sex-based differences in behavioural strategies of wild populations are critical components of ecosystem-based management plans (Wearmouth & Sims, 2008). In a conservation context, sexual segregation has important implications for the management of marine populations, as it will provide information on the spatial-dynamics of male and female distribution, their abundance and thus the differential anthropogenic exploitation of the sexes through spatially focused fishing pressure (Sims, 2005; Mucientes et al., 2009).

Sharks are one marine group known to show sexual segregation. Sharks also display particular life-history traits such as slow growth, late maturity, low fecundity and a long life span compared to teleosts (Stevens et al., 2000), which may further exacerbate their vulnerability to overexploitation (Jennings et al., 1998; Stevens...
et al., 2000). Indeed, the harvest and by-catch of sharks has risen in recent decades, resulting in the decline of numerous species (Fowler et al., 2005). While anthropogenic disturbance is increasing, knowledge of their life-history variables and their intraspecific variability is lacking and this study aims to determine the presence of sexual segregation and life-history characteristics of a shark species from a currently unfished area, Moorea in French Polynesia.

The blacktip reef shark *Carcharhinus melanopterus* (Quoy & Gaimard, 1824) is a common species of Indo-West Pacific coral reefs (Compagno et al., 2005) inhabiting shallow reefs and sand-flats of both atolls and high islands (Hobson, 1963; Nelson & Johnson, 1980; Stevens, 1984; Papastamatiou et al., 2009a, 2010; Speed et al., 2011; Mourier et al., 2012) and occasionally non-reef environments (Chin et al., 2012), where it is one of the most abundant apex predators, although their numbers have been reduced by overfishing at many locations (Heupel et al., 2009).

Carcharhinus melanopterus is often observed in small aggregations, especially when feeding, but is considered neither a solitary nor a schooling shark (Nelson & Johnson, 1980; Papastamatiou et al., 2009b), and has only recently been found to demonstrate complex social interactions (Mourier et al., 2012). It also shows a high degree of site attachment and individual spatial overlap (Stevens, 1984; Papastamatiou et al., 2009b; Mourier et al., 2012). While some life-history parameters and population characteristics have been previously estimated from multiple locations (Bass et al., 1973; Randall, 1977; Stevens, 1984; Lyle, 1987; Papastamatiou et al., 2009a; Chin et al., 2012; Mourier et al., 2012), they show considerable variability (Table I). In this study, the population characteristics and estimated additional life-history variables were investigated and the data compared with those from other locations in the Indo-Pacific Ocean.

MATERIALS AND METHODS

STUDY SITE AND SAMPLING

Sharks were caught at Moorea Island [17° 30′ S; 149° 50′ W; Fig. 1(a)] from 2007 to 2011 and identified to the species level. *Carcharhinus melanopterus* usually spend most of their time close to the sea floor (Mourier et al., 2012); therefore, to avoid by-catch of other fishes they were attracted to the surface with bait and fishing rod with barbless hooks at multiple locations within and outside the lagoon [Fig. 1(b)]. The depths at all sampled sites were from 1 to 20 m and all *C. melanopterus*, once they had been lured from deeper waters, were captured at a depth of <2 m. They were brought alongside the boat where they were inverted and placed in tonic immobility (Watsky & Gruber, 1990). Pups were caught from the shore with gillnets positioned perpendicular to the shoreline in their potential nursery area (Mourier & Planes, 2013). Each individual was sexed and total length (*L*_T) was measured from the snout tip to the end of the upper caudal lobe. All sites on the fore-reef (i.e. locations on the ocean side of the reef) were characterized by continuous coral structures at depths of 15 to 25 m. Habitat characteristics were more variable within the lagoon and can be divided into three main categories: (1) shallow coral reefs with patches of sand at depths from 5 to 15 m (Mareto, PK23 and Varari), (2) sandy bottoms with depths from 5 to 20 m (Maatea, Tiahura and Nuurua) and (3) muddy and sandy substrata at depths <2 m (Haapiti and Pihaena).

SEX RATIO AND SIZE-FREQUENCY DISTRIBUTIONS

The sex ratio (male:female) was analysed at the island scale, as well as by area and size. The *χ*² goodness-of-fit test (*α* = 0·05; Zar (1999)) was used to examine significant
Table I. Summary of geographical variability in *Carcharhinus melanopterus* population characteristics. For all localities the following characteristics are indicated when available: recapture rate (R), sex ratio (M:F), mean growth rate, total length (L_T) at maturity for males and females, maximum L_T reported for males and females, mating and parturition periods, gestation duration, estimated L_T at birth, litter size, reproductive cycle and the sources of the data.

<table>
<thead>
<tr>
<th>Location</th>
<th>R (%)</th>
<th>Sex ratio (M:F)</th>
<th>Growth rate (cm year$^{-1}$)</th>
<th>Male L_T at maturity (cm)</th>
<th>Female L_T at maturity (cm)</th>
<th>Male maximum L_T (cm)</th>
<th>Female maximum L_T (cm)</th>
<th>Mating</th>
<th>Parturition</th>
<th>Gestation (months)</th>
<th>L_T at birth (cm)</th>
<th>Litter size</th>
<th>Reproductive cycle</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Ocean</td>
<td></td>
</tr>
<tr>
<td>Aldabra</td>
<td>23-2</td>
<td>1:1.43</td>
<td>3.50</td>
<td>105</td>
<td>110</td>
<td>130</td>
<td>140</td>
<td>October to November</td>
<td>October to January</td>
<td>10-11</td>
<td>50</td>
<td>2-5</td>
<td>Biennial</td>
<td>Stevens (1984)</td>
</tr>
<tr>
<td>Europa and Madagascar</td>
<td><110</td>
<td><119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>June to July and December to January</td>
<td></td>
<td>46-52</td>
<td>2-4</td>
<td></td>
<td></td>
<td>Fourmanoir (1961)</td>
</tr>
<tr>
<td>Southern Africa</td>
<td><109</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>June to July and December to January</td>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td>Bass et al. (1973)</td>
</tr>
<tr>
<td>Ningaloo, Australia</td>
<td>134</td>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>October to November</td>
<td>October to January</td>
<td>8-9</td>
<td>16</td>
<td>2-4</td>
<td></td>
<td>Speed et al. (2011)</td>
</tr>
<tr>
<td>Oman</td>
<td><108</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>February and September</td>
<td></td>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td>Henderson et al. (2007)</td>
</tr>
<tr>
<td>Red Sea</td>
<td></td>
<td>Melouk (1957)</td>
</tr>
<tr>
<td></td>
<td>Gohar & Mazhar (1964)</td>
</tr>
<tr>
<td>Indo-Pacific Ocean</td>
<td></td>
<td>Lyle (1987)</td>
</tr>
<tr>
<td>Northern Australia</td>
<td>95</td>
<td>125</td>
<td></td>
<td>November to March</td>
<td>8-9</td>
<td>16</td>
<td>50</td>
<td>2-4</td>
<td>Annual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>R (%)</td>
<td>Sex ratio (M:F)</td>
<td>Growth rate (cm year$^{-1}$)</td>
<td>Male L_T at maturity (cm)</td>
<td>Female L_T at maturity (cm)</td>
<td>Male maximum L_T (cm)</td>
<td>Female maximum L_T (cm)</td>
<td>Mating</td>
<td>Parturition</td>
<td>Gestation (months)</td>
<td>L_T at birth (cm)</td>
<td>Litter size</td>
<td>Reproductive cycle</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.27:1</td>
<td></td>
<td>108</td>
<td>~120</td>
<td>130</td>
<td>142</td>
<td></td>
<td></td>
<td>August to September</td>
<td></td>
<td>50–54</td>
<td>3</td>
<td></td>
<td>White (2007)</td>
</tr>
<tr>
<td>Pacific Ocean Palmyra</td>
<td>3:1</td>
<td>1:103</td>
<td>4.40</td>
<td>95</td>
<td>119</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>Papastamatiou et al. (2009b)</td>
</tr>
<tr>
<td>Marshall Islands Great Barrier Reef, Australia</td>
<td>21:0</td>
<td>1:700</td>
<td>6.29</td>
<td>100</td>
<td>135</td>
<td>154</td>
<td></td>
<td></td>
<td>December to April</td>
<td>November to March</td>
<td>57</td>
<td></td>
<td></td>
<td>Bonham (1960)</td>
</tr>
<tr>
<td>Moorea, French Polynesia</td>
<td>23.5</td>
<td>1:19:10*</td>
<td>6.08</td>
<td>111</td>
<td>139</td>
<td>157</td>
<td></td>
<td></td>
<td>November to March</td>
<td>September to January</td>
<td>9–10</td>
<td>1–2</td>
<td>Annual</td>
<td>Porcher (2005)</td>
</tr>
<tr>
<td>Captivity</td>
<td>22.90†</td>
<td></td>
<td>Randall (1977)</td>
</tr>
</tbody>
</table>

*Sex ratio was male-biased on the fore-reef and female biased in the lagoon.
†Only in the two first years after birth.
deviations from the expected 1:1 sex ratio. Size-frequency distributions of males and females were compared using a two-sample Kolmogorov–Smirnov test (Zar, 1999). Size-frequency distributions for males and females combined were also compared between sampled locations as well as between the lagoon and fore-reef.

GROWTH RATE

Growth rate was estimated using L_T measurements from $C. melanopterus$ that were captured and later recaptured. $Carcharhinus melanopterus$ were identified by photo-identification,
which is a suitable technique for this species (Mourier et al., 2012). When the time interval between capture and recapture (time at liberty) was short, measurement errors may confound growth estimates (Casey et al., 1985), therefore individuals at liberty for <200 days were excluded from the growth analysis (Simpfendorfer, 2000). The recapture samples were all within a narrow LT range, and thus a narrow age range, therefore an annual mean growth rate was estimated rather than constructing a growth curve (Fabens, 1965).

SIZE AT MATURITY FOR MALES

Male C. melanopterus LT at maturity was estimated using non-invasive methods. Maturity was directly determined by visually examining clasper length LC (cm) and degree of calcification (Bass et al., 1973). The percentage of mature individuals per 5 cm LT class was estimated. Length at 50% maturity (calcified claspers) was determined by fitting a logistic curve to the data and the LT at which 50% of individuals were sexually mature was calculated (King, 1995) using the equation:

\[p_i = \frac{1}{1 + e^{a+bLT}} \]

where \(p_i \) is the proportion of mature individuals in the LT class \(i \), and \(a \) and \(b \) are fitted parameters that can change during the life cycle. The mean LT at sexual maturity was calculated as \(LT_{50} = -\frac{ab}{1} \).

RESULTS

SEX RATIO

A total of 122 females and 146 males were caught at Moorea. The total number of adults of each sex did not differ significantly from unity (\(\chi^2 \) test, \(P > 0.05 \); Table II). Significant differences in sex ratios were found, however, when the fore-reef and the lagoon were analysed separately (Table II). Although, sex ratios for adult C. melanopterus did not differ from unity for over half of the individual locations at Moorea (seven out of 12), the locations at Tetaiuo, Ahi and Sheraton on the fore-reef were significantly male-biased (Table II), and Mareto and Nuurua within the lagoon were significantly female-biased (Table II). Overall, sex ratios for adult C. melanopterus were significantly male-biased on the fore-reef (\(\chi^2 \) test, \(P < 0.001 \); Table II) and significantly female-biased inside the lagoon (\(\chi^2 \) test, \(P = 0.001 \); Table II). Within the two main nurseries at Varari and Haapiti (Mourier & Planes, 2013), the sex ratio did not differ from unity (Table II).

SIZE DISTRIBUTION

A total of 268 C. melanopterus between 2007 and 2011 were sampled. Individuals ranged from 48 to 157 cm LT (48–139 and 48–157 cm LT for males and females,). Average female LT (mean ± s.e. = 121.24 ± 2.95 cm, median = 135 cm) was higher than that of males (mean ± s.e. = 108.46 ± 2.17 cm, median = 119 cm; independent samples t-test: \(t = 3.67 \), d.f. = 268, \(P < 0.01 \)). There was a significant difference in LT frequency distribution of males and females (Kolmogorov–Smirnov test, \(P < 0.001 \)).

Inside the lagoon, Varari and Haapiti on the west coast had different LT frequency distributions compared to all other lagoonal locations (Fig. 2; Kolmogorov–Smirnov tests, \(P < 0.001 \) for all comparisons). Individuals from these locations ranged mainly between 48 and 69 cm LT suggesting the presence of pups (newborns) and that Varari and Haapiti are nursery areas (Fig. 2; Mourier & Planes, 2013). On the fore-reef, the Sheraton location on the north coast had a smaller LT frequency distribution than all
Table II. Sex ratios for *Carcharhinus melanopterus* caught inside the lagoon and on the fore-reef of Moorea. Only sites where at least five individuals were caught are shown and only the sex ratio of adults are shown, except for potential nursery areas where pup sex ratios are presented (*). *P* values for χ^2 tests are given.

<table>
<thead>
<tr>
<th>Location</th>
<th>Males (M)</th>
<th>Females (F)</th>
<th>Ratio M:F</th>
<th>χ^2 test Statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Moorea</td>
<td>105</td>
<td>97</td>
<td>1:08:1</td>
<td>0.316</td>
<td>>0.05</td>
</tr>
<tr>
<td>Total fore-reef</td>
<td>79</td>
<td>42</td>
<td>1:8:1</td>
<td>11.314</td>
<td><0.001</td>
</tr>
<tr>
<td>Total lagoon</td>
<td>26</td>
<td>55</td>
<td>1:2:1</td>
<td>10.383</td>
<td><0.001</td>
</tr>
<tr>
<td>Potential nursery areas*</td>
<td>25</td>
<td>19</td>
<td>1:31:1</td>
<td>0.818</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Fore-reef

<table>
<thead>
<tr>
<th>Location</th>
<th>Males</th>
<th>Females</th>
<th>Ratio</th>
<th>χ^2 test Statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetaiuo</td>
<td>7</td>
<td>0</td>
<td>–</td>
<td>7.000</td>
<td><0.01</td>
</tr>
<tr>
<td>Tiki</td>
<td>13</td>
<td>6</td>
<td>2:1:1</td>
<td>2.578</td>
<td>>0.05</td>
</tr>
<tr>
<td>Ahi</td>
<td>5</td>
<td>0</td>
<td>–</td>
<td>5.000</td>
<td><0.05</td>
</tr>
<tr>
<td>Opunohu</td>
<td>24</td>
<td>16</td>
<td>1:5:1</td>
<td>1.600</td>
<td>>0.05</td>
</tr>
<tr>
<td>Sheraton</td>
<td>9</td>
<td>2</td>
<td>4:5:1</td>
<td>4.454</td>
<td><0.05</td>
</tr>
<tr>
<td>Taotoi</td>
<td>12</td>
<td>12</td>
<td>1:1</td>
<td>0.000</td>
<td>>0.05</td>
</tr>
<tr>
<td>Papetoai</td>
<td>6</td>
<td>5</td>
<td>1:2:1</td>
<td>0.091</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Lagoon

<table>
<thead>
<tr>
<th>Location</th>
<th>Males</th>
<th>Females</th>
<th>Ratio</th>
<th>χ^2 test Statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haapiti*</td>
<td>14</td>
<td>12</td>
<td>1:2:1</td>
<td>0.153</td>
<td>>0.05</td>
</tr>
<tr>
<td>Varari*</td>
<td>11</td>
<td>7</td>
<td>1:5:1</td>
<td>0.889</td>
<td>>0.05</td>
</tr>
<tr>
<td>Maatea</td>
<td>4</td>
<td>6</td>
<td>1:1:5</td>
<td>0.400</td>
<td>>0.05</td>
</tr>
<tr>
<td>Mareto</td>
<td>2</td>
<td>9</td>
<td>1:4:5</td>
<td>4.454</td>
<td><0.05</td>
</tr>
<tr>
<td>PK23</td>
<td>2</td>
<td>4</td>
<td>1:2</td>
<td>0.666</td>
<td>>0.05</td>
</tr>
<tr>
<td>Tiahura</td>
<td>4</td>
<td>7</td>
<td>1:1:7</td>
<td>0.818</td>
<td>>0.05</td>
</tr>
<tr>
<td>Nuurua</td>
<td>14</td>
<td>29</td>
<td>1:2:07</td>
<td>5.236</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Other oceanic locations (Kolmogorov–Smirnov tests, $P < 0.05$ for all comparisons) (Fig. 2). Overall, L_T frequency distributions were different between the fore-reef and the lagoon (Kolmogorov–Smirnov test, $P < 0.001$), even when the nursery areas, Varari and Haapiti, were removed from the analyses (Kolmogorov–Smirnov test, $P < 0.05$). Excluding nurseries (Varari and Haapiti), *C. melanopterus* were larger within the lagoon (mean ± s.e. = 129.47 ± 1.83 cm) than on the fore-reef (mean ± s.e. = 123.71 ± 1.19 cm; independent samples t-test; $t = 2.62$, d.f. = 217, $P < 0.01$) which is probably due to the higher proportion of females, the larger sex, inside the lagoon and a larger proportion of males, the smaller sex, on the fore-reef (Table II).

GROWTH

Of the 63 recaptures, 34 occurred with a time at liberty of <200 days, while an additional nine did not have measurable differences in L_T between capture and recapture and therefore were also excluded from growth rate calculations. The time at liberty for the 20 recaptured *C. melanopterus* included in the analysis ranged from 201 to 714 days. Mean ± s.e. annual growth rate for recaptured *C. melanopterus* was 6.08 ± 0.76 cm year$^{-1}$.

© 2013 The Authors
Fig. 2. Total length (L_T) frequency histogram for 268 *Carcharhinus melanopterus* (■, males; □, females) caught in different locations around Moorea: (a) fore-reef (sampling locations on the ocean side) and (b) lagoon (sampling locations inside the lagoon).

SIZE AT MATURITY FOR MALES

The L_T and L_C were measured for 94 male *C. melanopterus* between 2009 and 2011 of which 31 had non-calcified claspers and 63 had calcified claspers. On the basis of the logistic curve, 50% of male *C. melanopterus* had calcified claspers at 111±0.1 cm L_T (Fig. 3). Clasper elongation and calcification generally occurs between 111 and 114 cm L_T; the smallest male with calcified claspers measured 111 cm L_T and the largest immature male was 114 cm L_T (Fig. 3).

DISCUSSION

HABITAT USE AND HABITAT PARTITIONING

Contrary to Palmyra Atoll where *C. melanopterus* were mainly found inside the lagoon (Papastamatiou *et al.*, 2009b), they were abundant both inside and outside the lagoon at Moorea (French Polynesia), sharing their habitat with the pink whipray...
POPULATION STRUCTURE OF *CARCHARHINUS MELANOPTERUS* 987

Fig. 3. (a) Relationship between total length (L_T) and clasper length (L_C) for male *Carcharhinus melanopterus* at Moorea (●, calcified claspers; ○, non-calcified claspers). (b) Maturity of males from calcified claspers. A logistic curve was fitted to the data: $y = \left[1 + e^{(a+bx)}\right]^{-1}$ where $a = -75.1441$ and $b = 0.6769$, $P < 0.05$. ————, L_T at which 50% have calcified claspers (111.01 cm).

Himantura fai Jordan & Seale 1906 within the lagoon (Gaspar *et al.*, 2009), and with sicklefin lemon sharks *Negaprion acutidens* (Rüppell 1837) (Buray *et al.*, 2009) and grey reef sharks *Carcharhinus amblyrhynchos* (Bleeker 1856) on the fore-reef. Juvenile *C. melanopterus* also shared their potential nursery habitat with juvenile *N. acutidens* as the latter were also caught in the nursery areas, Haapiti and Varari, during this study.

SEXUAL SEGREGATION

These data show patterns of spatial sexual segregation: the overall proportion of females was higher inside the lagoon, while the proportion of males was higher on fore-reef habitats, although some site variability was evident (Table II). Spatial segregation of the sexes is a widespread phenomenon in sharks (Wearmouth & Sims, 2008; Jacoby *et al.*, 2012) and can be categorized into two types: habitat segregation and social segregation. Habitat segregation occurs when the sexes differ in their use of the habitat, and social segregation is the tendency for a species to form single-sex groups.

It was previously found that within a small area *C. melanopterus* formed mixed-sex social groups in which associations were assorted by size and sex (Mourier *et al.*, 2012). Therefore a pattern of social segregation has been observed, although it is not possible to fully understand the evolutionary advantage of preferentially associating with individuals of similar sex.

© 2013 The Authors
Such social segregation may be purely the result of conspecific segregation after habitat segregation has occurred. Habitat segregation may be influenced by different factors including sexual dimorphism, differential activity budgets between the sexes (Jacoby et al., 2012) or sex-specific temperature preferences. Evidence was found for sexual dimorphism at Moorea (females are larger than males) which is likely to confer significant differences in predation risk, nutritional requirements and activity budgets between the sexes that subsequently influence the spatial and temporal habitat use by each sex (Sims, 2005; Wearmouth & Sims, 2008). In addition, the selection of shallower habitats by female C. melanopterus may be related to sex-specific temperature preferences (Wearmouth & Sims, 2008). Other female shark species occupy warmer, inshore refuges for thermoregulation purposes (Hight & Lowe, 2007), which may enhance gestation and embryonic development. Although all females caught within the lagoon were mature (>120 cm L_T; Fig. 2 and Table I), and the lagoon is significantly warmer than the fore-reef (mean temperature ± s.e.; lagoon $= 27.798 \pm 0.011^\circ C$; fore-reef at 25 m $= 27.756 \pm 0.006^\circ C$; paired t-test: $t = 5.0063, P < 0.001$; between 2008 and 2010; J. Mourier, unpubl. data), this small difference in temperature would probably not confer any physiological advantage. Rather, pregnant females may choose habitats that are safe from predators and display behaviours that reduce the risk of predation in order to increase offspring survival and their reproductive success, whereas males seek habitats with high food availability (Galzin, 1987; Sims, 2005). Otherwise, females may also seek refuge in the shallow waters of the lagoon to avoid male harassment for mating (Economakis & Lobel, 1998; Wearmouth et al., 2012).

Alternatively, if there are sex-specific dietary preferences with different foraging strategies and energy requirements between the sexes (McCord & Campana, 2003) then differences in habitat or prey distribution at the island scale could also contribute to the observed sexual segregation. Galzin (1987) found that fish communities were spatially variable around the island of Moorea depending on habitat configuration; fish community composition was found to be different between the lagoon and fore-reef in Moorea with additional variability in lagoonal communities between the three coasts (Galzin, 1987). This hypothesis could be verified in the future by testing differences in isotopic signatures between the sexes and linking them back to differences in their diet (Hussey et al., 2012). The observed sexual segregation of C. melanopterus at Moorea may therefore arise through a combination of sexual habitat segregation and social preferences.

SIZE DISTRIBUTION

The size-frequency distributions are typical of an unfished population with a high proportion of large individuals. The smallest C. melanopterus caught in Moorea were six 48 cm L_T neonates with apparent open umbilical scars signifying that they were born very recently. This birth size is larger than that reported for C. melanopterus at both the Marshall Islands and at Palmyra Atoll in the Pacific Ocean (Table I), but was similar to that described for C. melanopterus in northern Australia, at Aldabra in the Indian Ocean, in the Red Sea and at other locations (Table I). Papastamatiou et al. (2009a) argued that the small size at birth that they found may be more characteristic of atolls in the Pacific Ocean because free-ranging C. melanopterus as small as 33 cm L_T were found in Marshall Islands (Bonham, 1960). Despite being a
Pacific Island, however, Moorea had larger neonates than both Palmyra and Marshall Islands.

In agreement with other studies on this species (Table I), females were larger than males in Moorea. Furthermore, the maximum L_T of females caught in Moorea (157 cm) was larger than that in Aldabra, in Palmyra and in northern Australia (Table I). Males reached a maximum L_T of 139 cm at Moorea which was also longer than that reported in Palmyra, in Aldabra and all other locations (Table I), but Bass et al. (1973) reported an exceptional maximum L_T of 160–180 cm on the east coast of southern Africa. Variation in maximum sizes is generally attributed to varying levels of intra and interspecific competition limiting the food resources (Stevens, 1984; Papastamatiou et al., 2009a). Except for the east coast of southern Africa, maximum sizes for both males and females in Moorea are larger than in previous studies, implying that *C. melanopterus* densities, or that of other competing species, at Moorea are low or are not limited by food resources. Regarding other competing shark species, the *N. acutidens* population at Moorea is small (Buray et al., 2009) and *C. amblyrhynchos* seem to be relatively abundant only at one location in Moorea [Tiki, Fig. 1(b)]. Moreover, these two co-occurring species are not often found in the lagoon (Buray et al., 2009; Gaspar et al., 2009; Clua et al., 2010; Mourier et al., 2012) although *C. melanopterus* are abundant both within and outside the lagoon. Therefore, the low level of interspecific competition is likely to be one factor determining the longer L_T of *C. melanopterus* at Moorea. Anthropogenic pressures (e.g. tourism activities, habitat degradation, eutrophication and exploitation) may also influence demographic and biological variables (Clua et al., 2010) compared to pristine atolls (Stevens, 1984; Papastamatiou et al., 2009a). Finally, differences in maximum sizes may also result from local adaptation of *C. melanopterus* and different evolutionary strategies (DiBattista et al., 2007; DiBattista, 2008). For instance, larger individuals may have a decreased susceptibility to predation risk, access to a greater range of food types, greater competitive ability, increased resistance to extreme conditions or disease, earlier maturation and greater reproductive output (DiBattista et al., 2007). Future studies in other locations in French Polynesia will determine the contribution of local factors to the demographic and biological characteristics of *C. melanopterus* populations.

Although there appears to be an absence of *C. melanopterus* of an intermediate size (75–85 cm L_T) between juveniles and adults, this may be related to ontogenetic changes in habitat selection by immature or old juveniles, such as deeper parts of the lagoon that were not sampled. This pattern has also been reported in other locations (Papastamatiou et al., 2009a; Chin et al., 2012). Alternatively, this intermediate size may also represent a period of fast growth.

GROWTH

The mean annual growth rate in Moorea is very similar to the rate observed in *C. melanopterus* on the Great Barrier Reef and at Palmyra (estimate based on only one specimen), but was almost twice the rate of that of *C. melanopterus* from Aldabra (Table I) determined by length increment data obtained from tagging.

Future additional capture–recapture data, including more individuals at the juvenile stage, will allow for von Bertalanffy growth curve and length-at-age estimates. Furthermore, additional capture–recapture data will also allow for a comparison of
sex differences in growth rate that may explain why females reach a larger L_T than males. Estimates should also be verified through the use of other techniques such as vertebral analyses. Nevertheless, this study is one of the largest sampling efforts ever carried out to date for this species.

MATURITY

On the basis of the L_C and degree of calcification (Bass et al., 1973), L_T at maturity for male *C. melanopterus* in Moorea was estimated at 111 cm, larger than that for the species in northern Australia, in Palmyra, in Aldabra and all other locations previously sampled (Table I). These differences may be related to variation in productivity between small atolls and coastal locations or high islands such as Moorea, as well as anthropogenic and density-dependent demographic factors. Palmyra and Aldabra are two small atolls; northern Australia, however, is a wide and continuous coastal region and is believed to have high productivity (Chin et al., 2012). The larger observed size at maturity found at Moorea may also be related to natural selection and may be correlated with the larger maximum size of *C. melanopterus* in Moorea compared to other studied locations. Size at maturity for male *C. melanopterus* at Moorea is the largest ever reported for this species (Table I). These results should be further confirmed from steroid analyses using plasma testosterone level as an indicator of male maturity (Mills et al., 2010).

This study contributes to the general knowledge of a poorly known, but widespread reef-associated shark species: *C. melanopterus*. Overall, the results confirm that *C. melanopterus* is a long lived, slow growing (mean growth rate of 6 cm year$^{-1}$) and late maturing species (male size at maturity being 111 cm L_T) and thus recovery times from periods of overexploitation would be considerable. The *C. melanopterus* population of Moorea showed an apparent spatial sexual segregation with females being more numerous inside the lagoons and males on the fore-reef. The combination of these K-selected characteristics and patterns of sexual segregation highlights the degree of vulnerability of reef-associated shark species to rapid anthropogenic disturbances. Moreover, this study confirms the geographic variability of life-history traits found in this species and highlights the importance of local conditions in shark population life-history traits and degrees of vulnerability.

This study was implemented thanks to the financial support of the Direction à l’Environnement (DIREN) of French Polynesia, the Coordination Unit of the Coral Reef Initiatives for the Pacific (CRISP Program) and Proscience in French Polynesia. We are grateful to the Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE) staff for their technical support, as well as the volunteers and students who assisted in field data collection.

References

© 2013 The Authors

Electronic Reference